Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6606, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884532

RESUMO

Volcanic eruptions can trigger tsunamis, which may cause significant damage to coastal communities and infrastructure. Tsunami generation during volcanic eruptions is complex and often due to a combination of processes. The 1650 eruption of the Kolumbo submarine volcano triggered a tsunami causing major destruction on surrounding islands in the Aegean Sea. However, the source mechanisms behind the tsunami have been disputed due to difficulties in sampling and imaging submarine volcanoes. Here we show, based on three-dimensional seismic data, that ~1.2 km³ of Kolumbo's northwestern flank moved 500-1000 m downslope along a basal detachment surface. This movement is consistent with depressurization of the magma feeding system, causing a catastrophic explosion. Numerical tsunami simulations indicate that only the combination of flank movement followed by an explosive eruption can explain historical eyewitness accounts. This cascading sequence of natural hazards suggests that assessing submarine flank movements is critical for early warning of volcanogenic tsunamis.

2.
Nat Commun ; 14(1): 2497, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120623

RESUMO

Despite their global societal importance, the volumes of large-scale volcanic eruptions remain poorly constrained. Here, we integrate seismic reflection and P-wave tomography datasets with computed tomography-derived sedimentological analyses to estimate the volume of the iconic Minoan eruption. Our results reveal a total dense-rock equivalent eruption volume of 34.5 ± 6.8 km³, which encompasses 21.4 ± 3.6 km³ of tephra fall deposits, 6.9 ± 2 km³ of ignimbrites, and 6.1 ± 1.2 km³ of intra-caldera deposits. 2.8 ± 1.5 km³ of the total material consists of lithics. These volume estimates are in agreement with an independent caldera collapse reconstruction (33.1 ± 1.2 km³). Our results show that the Plinian phase contributed most to the distal tephra fall, and that the pyroclastic flow volume is significantly smaller than previously assumed. This benchmark reconstruction demonstrates that complementary geophysical and sedimentological datasets are required for reliable eruption volume estimates, which are necessary for regional and global volcanic hazard assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...